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Summary

In this paper, a probabilistic technique for compensation of
intensity loss in confocal microscopy images is presented. For
single-colour-labelled specimen, confocal microscopy images
are modelled as a mixture of two Gaussian probability
distribution functions, one representing the background
and another corresponding to the foreground. Images are
segmented into foreground and background by applying
Expectation Maximization algorithm to the mixture. Final
intensity compensation is carried out by scaling and shifting
the original intensities with the help of parameters estimated
for the foreground. Since foreground is separated to calculate
the compensation parameters, the method is effective even
when image structure changes from frame to frame. As
intensity decay function is not used, complexity associated
with estimation of the intensity decay function parameters
is eliminated. In addition, images can be compensated out
of order, as only information from the reference image is
required for the compensation of any image. These properties
make our method an ideal tool for intensity compensation of
confocal microscopy images that suffer intensity loss due to
absorption/scattering of light as well as photobleaching and
the image can change structure from optical/temporal section-
to-section due to changes in the depth of specimen or due to a
live specimen. The proposed method was tested with a number
of confocal microscopy image stacks and results are presented
to demonstrate the effectiveness of the method.
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Introduction

Images produced by confocal microscope tend to decrease
in intensity with time as an effect of photobleaching
when conventional fluorescence tags are used or with
depth due to absorption or scattering of excitation and
fluorescence. These effects make analysis of the images
without intensity correction a complicated problem. Methods
used to compensate the intensity loss can be categorized into
two types,
• Pre-processing methods: Ones that correct the intensity loss

with modified optics as the images are being captured
(Atkins & De Paula, 1994; Chen et al., 1995; Becker,
1996; Song et al., 1996). More recently, a method, which
manipulates the photomultiplier gain, was introduced to
counter the high intensity losses in the deep layers of the
specimen by Ĉapek et al. (2006).

• Post-processing methods: These methods compensate the
images after they are captured (Rigaut & Vassy, 1991;
Oostveldt et al., 1998; Ortiz et al., 1999; Kervrann et al.,
2004; Ĉapek et al., 2005). Intensity decay function (IDF)–
based methods model intensity loss in the images as a
parametric decay function of depth or time. The decay
parameters are estimated and compensated for in these
methods. Another family of methods relies on matching
histogram profiles of image stacks. These methods however
cannot handle change in image structure along the optical
axis.

Optics-based methods assume that the majority of the intensity
loss is due to absorption and scattering of light as it travels
through the specimen. As the rate of photobleaching can vary
for different types of specimens, intensity loss cannot be ideally
compensated by optics alone. For this reason, we concentrate
on post-processing methods to correct the intensity loss.
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As factors contributing to the intensity loss cannot be
modelled accurately for practical images according to Wu &
Ji (2005), it poses a problem when IDF is used for intensity
compensation. In addition, the combination of intensity loss
due to photobleaching and depth can give rise to a complicated
IDF. Our method is motivated by histogram matching;
however, it deals with a continuous domain by modelling an
image as a mixture of two Gaussian probability distribution
functions (PDFs) and matching the profiles of foreground
probability distributions. By matching foreground and not
the entire image, our method avoids the problems arising
due to change in structure of the image. Different post-
processing approaches to correct the intensity variations
can be found in the literature. Negahdaripour & Yu (1993)
apply a general model in which the horizontal and vertical
flow fields as well as additive and multiplicative intensity
relationships are estimated for every pixel. According to Ĉapek
et al. (2005), this approach is computationally expensive. A
least-squares optimization-based approach, which optimizes
brightness and contrast, is proposed by Periaswamy & Farid
(2003) and Kervrann et al. (2004). These techniques are
highly sensitive to outliers. The reweighed least-squares
method is used by Kervrann et al. (2004) to correct the
disadvantage of Periaswamy & Farid (2003). The method
discussed in Kervrann et al. (2004) is not only sensitive
to noise which can be eliminated by median filtering but
also to the dynamic movement of objects in neighbouring
optical sections. According to Ĉapek et al. (2005), this gives
erroneous and unstable results even in the presence of a very
few outliers in optical sections. In Cox et al. (1995), intensity
variations are corrected based on histogram warping, but it is
restricted to the case where a global, spatially invariant, non-
linear, monotonically increasing relationship exists between
the intensities of the two images. Ĉapek et al. (2005) extend
the approach of Cox et al. (1995) and attempt to give a
general and fully automatic method of correcting intensity
loss in confocal microscopy images. The proposed method
manipulates the image histogram as in Ĉapek et al. (2005),
but it focusses on the continuous domain of probabilities to
filter the foreground information to calculate the correction
parameters. Before we present our approach, we will discuss
the approach by Ĉapek et al. (2005) in short. The approach
proposed in Ĉapek et al. (2005) consists of two stages. In
the first stage, a standard histogram is constructed with the
help of histograms of all the optical sections in the image
stack. In the second stage, individual histograms are warped
according to the standard histogram to achieve the brightness
and contrast of the standard histogram. The construction
of standard histogram is adopted from Nyul et al. (2000).
The approach is based on landmarks chosen in the image
histogram. The landmarks chosen are the minimum and
maximum intensities and percentiles of the intensities of the
image. However, minimum and maximum intensity of image
are highly sensitive to noise. For the images that change the

structure from optical section-to-section, proportion of the
foreground to the background varies. This causes substantial
changes in histograms, making histogram-based methods less
effective. The main idea of the proposed method is to filter the
foreground information from a given image by modelling it
as a mixture of Gaussian PDFs and use this information to
compensate image intensity loss. The foreground mean and
standard deviation are used to transform the pixel intensities
of the original image relative to the intensity parameters of a
reference image. The paper is organized as follows: Section 2
explains the proposed approach in detail. Section 3 presents
experimental results. Paper concludes in Section 4.

Proposed approach

In many statistical applications, Gaussian mixture modelling
(GMM) is used as a general tool for modelling a large
heterogeneous population. Detailed introduction to GMM can
be found in Theodoridis & Koutroumbas (1999). GMM is
a semi-parametric estimation approach that provides good
flexibility and precision in modelling the statistics of unlabelled
sample data. In our case, the image data can be assumed
to be generated from two components, one forming the

Fig. 1. Flowchart for the proposed compensation algorithm, numbers in
the bracket indicate the corresponding equations.
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Fig. 2. Sequence 1: Original optical sections at time t = 1 from (a) top (z = 1) to (l) bottom (z = 12) (bottom frame is used as the reference).

background of the image and the other pertaining to the
foreground of the image. However, it is not known that
which pixel belongs to which component. Because of this,
the problem can be considered to have missing data, that
is, background/foreground membership information. Each
component can be considered to have its own parameters
θ , which define the probability density function Pi(x;θ ).
These parameters can be estimated through the expectation
maximization (EM) algorithm, which is the widely used
approach to solve the missing data problem. It devises
appropriate parameters for the chosen model with respect to
the data points generated by individual components. In the

EM algorithm, initial estimates for the parameters are chosen
arbitrarily. As the selection of initial estimates affects the
result, they must be chosen carefully. The iterative parameter
estimation process consists of two steps, the expectation (E)
step and the maximization (M) step. In the E step, the expected
value of the missing data is calculated. In the M step, the
resulting value of the expectation is maximized by selecting
new set of parameters. The E and M steps are iterated until a
stopping criterion such as a number of iterations is met or until
there is no change in the mixture model parameters. Most of
the images captured with confocal microscopy are bimodal,
one mode each for background and foreground. Hence, the
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Fig. 3. Sequence 1: Foreground membership probability for optical sections at time t = 1 (Bright regions denote higher foreground membership probability
and dark regions denote higher background membership probability).

image data is modelled as a two-component GMM. Based on the
assumption that the loss of intensity increases relatively with
time or depth or both, the first image of the time series or the
first z-slice of the stack will have minimal loss of intensity and
can be considered as the reference image. The reference image
should have good visual information of the object or specimen
to be studied. Initially, mean intensity and standard deviation
for the foreground and background are estimated with EM
algorithm. Then the parameters of the foreground component
are used to warp each pixel of the image to its relative reference

intensity. Following subsections explain individual steps taken
during this process in detail.

Parameter estimation

For a two component GMM of the j th image in a stack, there
are six unknown parameters,

θ j =
{(

w j
1, μ

j
1, σ

j
1

)
,
(
w j

2, μ
j
2, σ

j
2

)}
, (1)
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Fig. 4. Sequence 1: Mean intensity of foreground region in (a) original image stack and (b) restored image stack.
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Fig. 5. Sequence 1: Variation in the mean intensity of foreground region of original image stack and restored image stack (a) with depth (b) with time.

where w j
1, w j

2 are mixture weight constants, μ j
1, μ j

2 represent
mean intensities and σ

j
1, σ

j
2 give the standard deviations

corresponding to background and foreground Gaussian
PDF, respectively, for the j th image. The first step is to
estimate the membership probability for each nth pixel of
j th confocal microscopy image. Given intensity for this
pixel is xj

n, the membership probability can be calculated

as,

F j
i (n) = w j

i · P j
i

(
x j

n
)

w j
1 · P j

1

(
x j

n
) + w j

2 · P j
2

(
x j

n
) , (2)

where

P j
i

(
x j

n

) = 1

σ
j

i

√
2π

exp

{
−(

x j
n − μ

j
i

)2

2
(
σ

j
i

)2

}
. (3)
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In the above equations, i = 1, 2 and n = 1, 2, . . ., N × M,
where N × M is the dimension of the image and j = 1, 2,
. . ., K with K being the number of the image slices. In the
second step, the Gaussian PDF mixture parameter values are
estimated from the above membership probability:

w j
i = 1

M × N

M×N∑
n=1

F j
i (n), (4)

μ
j
i =

∑M×N
n=1 F j

i (n) · x j
n∑M×N

n=1 F j
i (n)

, (5)

σ
j

i =
√√√√∑M×N

n=1 F j
i (n) · (x j

n − μ
j
i )2∑M×N

n=1 F j
i (n)

. (6)

The above two steps are iterated until all the parameters
converge. The iterative process is repeated for each image in
the stack.

Image warping

Once the mixture parameters for the image are known,
intensity can be compensated by compensating these
parameters to match some reference. The compensated
intensity for the nth pixel in the j th image can be calculated
from original intensity xj

n as:

(x′) j
n = F j

2 (n) ·
{(

x j
n − μ

j
2

)
σ

j
2

σr + μr

}
+ F j

1 (n) · x j
n . (7)

Here, μr and σ r represent mean and standard deviation
references for the foreground. Mean and standard deviation
of the first image in the stack can be set as the reference
parameters for the image stack restoration. However, in the
case where the first image in the stack does not have enough
details or is not the brightest, one of the other images can be
chosen to be the reference. Figure 1 summarizes the entire
compensation algorithm.

Experimental results

The proposed approach was implemented in MATLAB and was
tested on several sets of images in the Biovision lab database
at University of Texas at Arlington. Before proceeding to the
experimental results, we will briefly talk about the initialization
used for the experiment. Initialization is crucial for the EM
algorithm. As parameters from the reference frame are needed
for image restoration, EM is carried out on the reference image
first. The mixture weights for the reference frame m can be
initialized as

wm
1 = wm

1 = 0.5.

Since the background mean is lower than the overall image
mean and foreground mean is higher, one can select the initial

values arbitrarily to follow this restriction,

μ = 1
M × N

M×N∑
n=1

xm
n , μm

1 = μ

2
, μm

2 = 3μ

2
.

A good initial value for the mixture standard deviation is the
overall standard deviation of the image.

σ m
1 = σ m

2 =
√√√√ 1

(M × N) − 1

M×N∑
n=1

(xm
n − μ)2.

These values can be improved upon by randomly using
various initializations and then choosing the one that
maximizes the membership probabilities. However, reasonable
fixed values as stated above were used for the repeatability of the
experiment. After successful completion of the EM procedure
for reference frame m, reference parameters are set as

μr = μr
2, σr = σ r

2 .

As any image in the sequence is very similar to its previous
image, the parameters of the previous image after EM are used
to initialize the EM procedure for the next image.

w j
1 = w j−1

1 , μ
j
1 = μ

j−1
1 , σ

j
1 = σ

j−1
1 ,

w j
2 = w j−1

2 , μ
j
2 = μ

j−1
2 , σ

j
2 = σ

j−1
2 .

This initialization also helps to reduce the computational
burden by reducing the number of EM iterations. MATLAB
implementation of the proposed method with above
initialization takes less than 1 s per optical section
on an average on a 2.53 GHz Pentium 4 computer.
This is faster compared to Ĉapek et al. (2006), who
report that C++ implementation of their approach takes
approximately 2 s per optical section. A C++ implementation
of our approach can provide further speed-up if
needed.
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Fig. 6. Sequence 1: Contrast-to-noise ratio.
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Fig. 7. Sequence 1: Restored optical sections at time t = 1 from (a) top (z = 1) to (l) bottom (z = 12).

Sequence 1

The sequence tested here is a 4D-xyzt sequence with resolution
336 × 256 × 12 × 45 acquired by spinning disk confocal
microscopy, and showing the trafficking of caveolin1-GFP
in a CHO (Chinese hamster ovary) cell. Figures 2(a) to (l)
show all the 12 optical sections at time t = 1. It can be
observed from the images that the intensity of the optical
sections varies significantly from one section to the other. The
intensity rises from depth z = 1 to z = 5 and drops again till
z = 11 before it rises in the final optical section at z = 12.

These intensity changes primarily result from a combination
of increasing z depth, changes in cross-sectional area of the
cell, and actual changes in the distribution of caveolin1-GFP,
which is concentrated on the cell surface relative to the cell
interior. Section 12 shows the bottom surface of the cell where
it is spread out on the glass cover slip. The top surface of the cell
was not included in the z stack. In addition, the morphology
of discrete fluorescent objects changes with the depth. GMM
parameters were calculated with EM algorithm. For each
frame, the iterative process was terminated when foreground
and background mean values changed by less than 0.01.
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Fig. 8. Sequence 2: Original image stack: optical sections from z = 1 to 18, at t =30.

Figure 3 shows the foreground membership probability after
the convergence of EM algorithm. Since these are membership
probabilities and not memberships, these can take any value
from 0 to 1. The brightness of a pixel is higher, that is the

probability is close to one, if it belongs to the foreground.
On the other hand, the darkness of a pixel indicates that it
belongs to background (this means the probability is close to
0). Despite the structural changes and changes in intensity,

Fig. 9. Sequence 2: Original image stack: optical sections at z = 15 for t = 1, 12, 24, 36, 48, 60.
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Fig. 10. Sequence 2: Variation in the mean intensity of foreground region
of original image stack and restored image stack (a) with depth (b) with
time.

the foreground regions are consistently detected. The success
of the proposed method can be attributed to this consistency.
Figure 4 shows foreground mean intensities for the entire
image stack before and after compensation. A few of the curves
are extracted in Fig. 5 to observe the intensity loss trends
closely. Figure 5(a) shows the plot for the variation in the
foreground mean with depth at time t =10, 20, 30, which
is in agreement with the visual observations made. However,
variation of mean intensity with time plotted in Fig. 5(b)
for depth z = 3, 6, 12 reveal facts that are difficult to
observe visually. Intensity of the foreground drops as the time
progresses as expected owing to effects of photobleaching.
However, rate of the decay is different at different depth levels.
At depth z = 6, the mean intensity drops from 77.3 to 75.3,
whereas at depth z = 12 it drops from 82.2 to 77.0. Decay rate
at z = 12 is more than two times the decay rate at z = 6. As
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our method does not use IDF, estimation of complicated IDF
required to model this image sequence becomes unnecessary.
The image sequence was restored with reference values μr =
82.2 and σ r = 50.9, which were estimated from frame at t =
1 and z = 12. This frame was chosen as it has the maximum
mean intensity. Restored images at z = 1 are shown in Fig. 7.
Foreground intensities of the restored image stacks are plotted
in Fig. 4(b). Steady values of the intensities can be observed
in the plot. The steady values are also reflected in the restored
images in Fig. 7. Contrast-to-noise ratio (CNR) was computed
for the sequence for quantitative analysis.

CNR = μ
j
2 − μ

j
1

σ
j

1

. (8)

Figure 6 shows CNR curves before and after compensation
for depths z = 3, 6, 12. A substantial increase in the CNR after
the compensation can be seen for all the depths.

Sequence 2

The next sequence is a 4D-xyzt sequence similar to the first
sequence with resolution 333 × 120 × 18 × 60. Compared to
the first sequence, the second sequence shows more structural
changes as seen in Fig. 8. The shape of the foreground object
changes from a single round object in the top optical section to
the two elongated objects in the deeper optical sections. It also
exhibits severe photobleaching with time (Fig. 9). Foreground
mean intensities are dropping drastically with time as seen in
Fig. 10(b). Worst drop is from 70.3 to 31.4 at depth z = 18.
Although, the least drop is experienced by z = 6, it has the
least foreground mean intensity to start with. The sequence
was restored by selecting optical section at z = 18 at time t = 1
with μr = 70.3 and σ r = 43.6. Steady intensities can be seen
after the restoration in Figs 12, 13 and also in 10 (a) and 10
(b). CNR for this sequence is shown in Fig. 11.
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Fig. 12. Sequence 2: Restored image stack: optical sections from z = 1–18, at t =30.

Fig. 13. Sequence 2: Restored image stack: optical sections at z = 15 for t =1, 12, 24, 36, 48, 60.

Sequence 3

The third image sequence is a 3D-xyt sequence of dimensions
512 × 512 × 220 showing trafficking of caveolin1-GFP in a

single optical section. For this long sequence, intensity loss due
to photobleaching is prominent as frame number increases.
Mean intensity of the foreground drops from 35 to 21.5 from
frame at time t = 1 to t = 220. Changes of object shape
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Fig. 14. Sequence 3: Reference section t = 1 and some sections from an original image stack. Sections: (a) t = 1, (b) t = 20, (c) t = 40, (d) t = 60, (e) t =
80, (f) t = 100, (g) t = 120, (h) t = 140, (i) t = 160, (j) t = 180, (k) t = 200, (l) t = 220.

from frame to frame are mainly due to object motion, and
are minimal compared with those resulting from changing
optical section as in the first two sequences. In Fig. 14, we
show the few images from the original sequence of confocal
microscopy images. The entire sequence was processed by our
algorithm using first frame (Fig. 14(a)) as the reference image.

Reference values were μr = 34.7 and σ r = 36.8. From Fig. 16,
one can see that the intensity drops steadily with increasing
time-point. Generally, this decay is modelled with an IDF. A
simple photophysical model for photobleaching is a single
exponential decay, but the actual IDF may be much more
complicated and impossible to estimate a priori. The proposed
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Fig. 15. Sequence 3: Reference section t = 1 and some sections from restored image stack. Sections: (a) t = 1, (b) t = 20, (c) t = 40, (d) t = 60 (e) t = 80,
(f) t = 100, (g) t = 120, (h) t = 140, (i) t = 160, (j) t = 180, (k) t = 200, (l) t = 220.

method has helped to maintain a constant intensity for
the entire stack after the compensation without any IDF.
In Figs 15 and 16, it can be observed that the intensities
of the foreground object of the restored series are uniform
with very little variation. For the first frame, the number
of iterations taken for EM to converge was 63. For the rest

of the frames, it required only 1.36 iterations on average,
with a minimum of 1 and a maximum of 11 iterations.
Thus, using previous frames estimated parameters to initialize
the next frames’ parameters helps to reduce computational
load significantly. Fig. 17 shows CNR before and after
compensation.
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Sequence 4

Sequence 4 is a 3D-xyt sequence similar to Sequence 3 with
resolution 512 × 512 × 166. For this image sequence, it is
difficult to separate the foreground and background visually.
Foreground membership probability for the optical sections
shown in Fig. 18 are depicted in Fig. 19 as estimated by the
proposed algorithm. Similar to sequence 3, Fig. 21 shows
the decay of foreground intensity over time. The first frame
of the sequence was chosen as the reference frame. Reference
mean μr was calculated to be 35.4 and reference standard
deviation σ r was 27.1. Restored images are shown in Fig. 20
and corresponding contrast-to-noise ratios are plotted in
Fig. 22.

Conclusion

For reliable analysis as well as visualization of cell dynamics,
it is essential that the acquired images reflect the exact

information of the specimen. The objective of the proposed
method was to help regain the visual information lost due to
various deteriorating factors such as scattering and absorption
of the excitation, photobleaching of fluorescent images etc.
Majority of the current approaches to solve this problem are
either computationally complex, time-consuming, restricted
to parametric decay models (IDF) or are highly sensitive to
noise. The proposed method provides a simple yet effective
statistical approach to solve this problem. It overcame
the disadvantages of current methods and at the same time
increased the visual value of confocal microscopy images.
The main idea was to filter the foreground information from
a given image by modelling it as a mixture of Gaussian
PDFs and use this information to compensate the intensity
loss of the confocal microscopy images. When multiple
fluorescence tags are used in a specimen, the proposed method
can be simply applied to the individual tags or a multiple
Gaussian PDF mixture model can be used to handle the
scenario.
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Fig. 18. Sequence 4: Reference section t = 1 and some sections from original image stack. Sections: (a) t = 1, (b) t = 20, (c) t = 40, (d) t = 60, (e) t = 80,
(f) t = 100, (g) t = 115, (h) t = 130, (i) t = 166.
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Fig. 19. Sequence 4: Foreground membership probability for optical sections at time (a) t = 1, (b) t = 20, (c) t = 40, (d) t = 60, (e) t = 80, (f) t = 100, (g) t =
115, (h) t = 130, (i) t = 166 (Bright regions denote higher foreground membership probability and dark regions denote higher background membership
probability).
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Fig. 20. Sequence 4: Reference section t = 1 and some sections from restored image stack. Sections: (a) t = 1, (b) t = 20, (c) t = 40, (d) t = 60, (e) t = 80,
(f) t = 100, (g) t = 115, (h) t = 130, (i) t = 166.
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